
Topic 2
Classes,
Objects,
Methods
and Strings

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Briefly explain how O-O design supports

better design

§ Describe the difference between an object

and a class

§ Be able to declare String variables and

create new String objects

§ Know how to use basic String methods such

as length(), trim(), charAt(), substring(),

equals(), equalsIgnoreCase, compareTo()

and indexOf()

Objectives

4

§ Know how to find and extract information from

the Java on-line library class documentation

§ Know what the two main types of variables are

in Java

§ Be able to set up a separate client class

§ Describe the main components of a class

definition

§ Describe the UML notation for a class

§ Know what an instance variable is and what is

it for

Objectives

5

§ Explain what is done by the following line of
code: MyClass c = new MyClass();

§ Explain what is meant by "invoking a method"

§ Be able to classify variables as local or

instance

§ Be able to define and use a method with a

parameter

§ Explain in what way Java uses call-by-value

for primitive types

§ The use of array in Java (introduction)

Reading - Savitch: Chapters 2.2, 5.1, 7,1

Recommended self test questions:

Chapters 5.1

Objectives

6

§ A systematic way to develop better software

designs

§ May be supported by a programming

language

§ OOP = Object-Oriented Programming; that is,

programming in an O-O way

§ Began in 1960s with the language Simula for

simulation programs

§ Became popular in early 1990s with C++ for

general purpose programming

Object-Oriented Design

Methodology

7

§ Now it is the main way of constructing

complex software

§ C++ is widely used, Java is being used at a

hugely increasing rate

§ The main characteristic of OOP is the use of

Objects and Classes

Object-Oriented Design

Methodology

8

§ The purpose is to support better design by:

§ Supporting abstraction, in particular data

abstraction, i.e. being able to organize the data

in a program, by lumping related data together

and having a simple name for a big lump.

Associated procedures can get lumped in

together too (also called Abstract Data Type -

ADT)

§Eg: we can represent all the details concerning a

student (name, number, units enrolled in, etc.)
together with the operations (initialise, update, print,

etc.) in one class

Object-Oriented Design

Methodology

9

§ The purpose is to support better design by:

§ Supporting re-use, allowing programmers to reuse

their own and other people’s code (in more

sophisticated ways than cut, paste and edit)

§ Encouraging the design of code appropriate to a

particular area (or problem domain) rather than a

particular task

Object-Oriented Design

Methodology

10

§ An object (in real world as well as in

software) represents an identity that can be

distinctly identified

§ Eg:

§ a person

§ a bank account

§ a house

§ a species

§ a list

§ a button etc.

What is an Object?

11

§ An object has:

§ identity - it acts as a single whole

§ state - it has various properties (a set of data

fields with their current values) that might

change

§ behaviour - it can "do things" and can have

things done to it

§A software object does something when one of its

methods is called

What is an Object?

12

What is a Class?

§ When a Java application is running, its

objects are created and their methods are

invoked

§ To create an object, there needs to be a

description of it

§ A class is a description of a kind of object (it

is a construct that defines objects of the

same type)

§ Programmers may define their own classes or

may use predefined classes that come in class

libraries, or do both

13

What is a Class?

§ A class is merely a plan for a possible object

(or objects)

§ A class does not itself create an object

§ An object is created when the operator new is

used with the name of the class

§ Creating an object is called instantiation

Figure 5.1 A class as a blueprint

Figure 5.1 ctd.

Objects that are

instantiations of the class

Automobile

16

Strings in Java

§ We have already used constants of type

String, eg: "Enter two numbers separated

by a space character"

§ A value of type String is a sequence of

characters treated as a single item

§ The class String is found in the java.lang

library and is automatically available to all

Java programs

17

Strings in Java

§ You can declare a String variable by:

String s; OR

§ Declare and initialize a String variable by:

String s = “Hello”;

§ The above statement is an abbreviation for:

String s = new String(“Hello”);

§ These declare the variable s, make a new

String object with current contents “Hello” and
get s to refer to that object

18

Strings in Java

§ You can concatenate two or more strings using
the ‘+’ operator (called the concatenation

operator)

s = s + “ World”;

System.out.println(“Result: ” + s);

int count = 193;

s = s + “ of ” +count+ “ Countries!”;

System.out.println(s); // what is the output?

19

Strings in Java

§ String is a special class because:

§ It is built-in

§ The compiler automatically recognizes String

constants (i.e. quoted text)

§ You don’t have to use new to get a new String
§ There is a concatenation operator (+) which can be

applied to strings

§ And no methods allow you to change the value of

a String object

§ However, String is also a class like any other

class

20

String Class Methods
§ There are many useful methods in the String

class. For example:

int length() returns the length of the String

Eg:

String s = “Hello”;

int a = s.length();

§ The value returned by length() method will be

5

§ You can use a call to method length()

anywhere an int can be used. Eg:
System.out.println("Length is " + s.length());

21

String Class Methods

§ Note that strings in Java start at position 0

and end at position length()-1

§ String trim() returns a String which is this

String with leading and trailing white spaces

removed

Eg:

String numInPlus= " 2.5 ";

String numIn= numInPlus.trim();

22

String Class Methods

§ char charAt(int pos) returns the

character at position indicated by its
argument pos. Note that the first character is

at position 0

§ Eg:

String myStr = "Computer Science";

char ch = myStr.charAt(5);

returns the character 't' in variable ch

23

String Class Methods

§ String substring(int start, int end)

returns the substring starting at position start

and ending one character before position end

§ Eg:

String sub1 = myStr.substring(2, 4); returns
"mp" in String variable sub1 (assuming that myStr

has the value “Computer Science”)

24

String Class Methods

§ String substring(int start)returns the

substring starting at position start of this

string through to the end of the string

§ Eg:

String sub2 = myStr.substring(9);

returns "Science" in String variable sub2 (assuming
that myStr has the value “Computer Science”)

25

String Class Methods

§ boolean equals(String other)returns

whether or not this String has the same value
as the other String

§ Eg:

s.equals("Hello")

§ boolean equalsIgnoreCase(String other)

behaves like equals but regards upper and

lower case versions of a letter to be the same

26

String Class Methods

§ int compareTo(String other)compares

this String to the other String and returns:

§ 0 if they have the same value

§ a negative number if this String comes before

the other String in the lexicographic

(dictionary) ordering

§ a positive number otherwise

27

String Class Methods
§ Eg:

System.out.println(“abc”.compareTo(“abc”));

§ // will output the value 0
System.out.println(“abc”.compareTo(“bac”));

§ // will output a negative number
System.out.println(“xyz”.compareTo(“def”));

§ // will output a positive number

§ compareToIgnoreCase(other) is also available,

which compares two strings lexicographically,

ignoring case differences

28

String Class Methods

§ int indexOf(String other) returns the index

of first occurrence of substring other within this

String. Returns -1 if substring other is not found

§ String replace(char oldChar, char

newChar) returns a new string having the same

characters as this string, but with each

occurrence of oldChar replaced by newChar

§ And many more (eg: toLowerCase(),
toUpperCase(), lastIndexOf(String other),

...)

29

String Class Methods

§ If you want to find out what methods are

available (and exactly what they do, and how

to call them, etc.) for the String class or any

other Java library class then you can look up

the Java on-line documentation

§ Java documentation is provided on the Web

by Oracle at:

http://docs.oracle.com/javase/8/docs/

30

String Class Methods

§ When you find the right Class in the right

library you will get

§ an overview of the Class

§ a summary of the Methods and

§ a list of the details of the methods

§ It is strongly recommended that you

become familiar with using the

documentation

31

// File: TestString.java

class TestString {

public static void main(String[] args){
// str1 and str2 are variables referring to an object,

// but the objects do not exist yet.

String str1;

String str2;
// len1 + len2 are two primitive variables of type int

int len1, len2;

// create an object of type String

str1 = new String("Computer Science");

// create another object of type String

str2 = new String("Games Technology");

Example

32

// invoke the objects length() method

len1 = str1.length();

len2 = str2.length();

System.out.println("The string \"" + str1 +

"\" is " + len1 + " characters long");

System.out.println("The string \"" + str2 +

"\" is " + len2 + " characters long");

Example

33

// compare strings with equals() method

if (str1.equals(str2))

System.out.println("\nThe two strings

are equal (same).\n");

else

System.out.println("\nThe two strings

are not equal (not same).\n");

Example

34

// compare strings with compare() method

if (str1.compareToIgnoreCase(str2)< 0)

System.out.println("\nThe two strings

\"" + str1 + "\" and \"" + str2 + "\"

are in alphabetical order.\n");

else

System.out.println("\nThe two strings

\"" + str1 + "\" and \""+ str2 + "\"

are not in alphabetical order.\n");

}// end of main

}// end of class TestString

Example

35

/* OUTPUT

The string "Computer Science" is 16 characters

long

The string "Games Technology" is 16 characters

long

The two strings are not equal (not same).

The two strings "Computer Science" and "Games

Technology” are not in alphabetical order.

*/

Output

36

§ Note that == is not appropriate for determining if

two String objects have the same value

§ Eg:

if (str1 == str2) … determines only if str1

and str2 refer to a common memory location

§ If str1 and str2 refer to strings with identical

sequences of characters, but are stored in
different memory locations then (str1 ==

str2) will yield false

Output

37

§ An O-O design has Objects in it

§ The Objects get created, have their properties

changed, change the properties of other

Objects etc., as the program runs

§ The designer / programmer chooses what

sorts of objects and how many of each sort

are used in the program

Objects, Methods and Classes

38

§ For example, an Object may be:

§ a person, or all the data about a particular

person, in a program that manages some

aspect of an organization

§ a visible component on a GUI

§ a chemical formula

§ or something really complex like a list of

classes of school children

Objects, Methods and Classes

39

§ Objects belong to Classes

§ A class:

§ Specifies the kinds of data an object of the

class can have

§ Provides methods specifying the actions an

object of the class can take

Objects, Methods and Classes

40

§ There may be several Classes of Objects

involved in a particular program

§ In a particular run of that program no., one,

several or many Objects belonging to a

particular Class might be used

§ An Object may own a more or a less

complicated bunch of data

§ The values may change as the program runs

Objects, Methods and Classes

41

§ However, the sorts (types) of data are fixed

for that Object and are the same for all

Objects of the same Class

§ An Object can do certain things

§ There is a fixed set of Methods (like

procedures) available to it

§ Every Object in the same Class has the same

Methods

Objects, Methods and Classes

42

§ Each variable in a Java program has to be

declared to be of a particular type

§ The variable may be of a primitive type (like

int, boolean, double, char etc) or of a Class

type

§ The Class type variables must be declared

to be of a particular Class type. Eg: String,

Button or an Array of something or some

programmer defined class like Sheep

Primitive Type Variables vs

Class Type Variables

43

§ The variable will then be able to refer to a

particular Object belonging to that Class

§ It may sometimes refer to no Object (a null

reference) and it may sometimes change

which Object it refers to (eg: by assignment)

but it is only allowed to refer to Objects

belonging to that Class. (*Later we see that

this is not quite true)

Primitive Type Variables vs

Class Type Variables

44

§ Many Classes may be necessary to solve a

particular problem

§ We may want to write several of our own

which use each other, use library Classes,

use other people’s Classes or let other

people use our Classes

§ A programmer or another Class which uses

one of our Classes may be called a client

Class Files, Clients and

Separate Compilation

45

§ The most basic set up is to have only one

Class per file

§ Remember that a file called MyClass.java

should contain source code for a class
called MyClass

§ The compiled bytecode will be kept in a file
called MyClass.class

Class Files, Clients and

Separate Compilation

46

§ In ICT167, you will most often be acting as

your own client

§ If you use MyClass in a Class called

MyClientClass then it is simplest to put

MyClientClass.java in the same directory

as MyClass.java.

§ When you compile MyClientClass.java

then the compiler will find the compiled
version of MyClass and there should be no

problem

Class Files, Clients and

Separate Compilation

47

§ Note that your (myClass) does not have to

have a main method

§ If you try running such a Class

java MyClass

§ you’ll get

§ Exception ... no such method: main

§ MyClass may be designed only to be used

by clients

Class Files, Clients and

Separate Compilation

48

import java.util.*;

public class SpeciesFirstTry {

public String name;

public int population;

public double growthRate;

public void readInput() {

Scanner keyboard = new Scanner(System.in);

System.out.println("What species' name?");

name = keyboard.nextLine();

System.out.println("What is the population

of the species?");

population = keyboard.nextInt();

Example Class

49

while (population < 0) {

System.out.println("Population must not

be negative.");

System.out.println("Re-enter

population:");

population = keyboard.nextInt();

}// end while

System.out.println("Enter growth rate

(percent increase per year):");

growthRate = keyboard.nextDouble();

} // end readInput

Example Class

50

public void writeOutput() {

System.out.println("Name = " + name);

System.out.println("Population="+population);

System.out.println("Growth rate = " +

growthRate + "%");

}

Example Class

51

public int getPopulationIn10() {

int result = 0;

double populationAmount = population;

int count = 10;

while ((count >0)&&(populationAmount >0)){

populationAmount = (populationAmount +

(growthRate/100) * populationAmount);

count--;

}// end while

Example Class

52

if (populationAmount > 0)

result = (int)populationAmount;

return result;

}// end getPopulationIn10

}// end class SpeciesFirstTry

Example Class

53

public class SpeciesFirstTryDemo {

public static void main(String[] args) {

SpeciesFirstTry speciesOfTheMonth = new

SpeciesFirstTry();

System.out.println("Enter Species data:");

speciesOfTheMonth.readInput();

speciesOfTheMonth.writeOutput();

int futurePopulation =

speciesOfTheMonth.getPopulationIn10();

System.out.println("In ten years the

population will be "+futurePopulation);

Example Client

54

//change the species to show how to change

//the values of instance variables

speciesOfTheMonth.name = "Klingon ox";

speciesOfTheMonth.population = 10;

speciesOfTheMonth.growthRate = 15;

System.out.println("The new Species of the

Month:");

speciesOfTheMonth.writeOutput();

System.out.println("In ten years the

population will be " +

speciesOfTheMonth.getPopulationIn10());

}// end main

}// end class SpeciesFirstTryDemo

Example Client

55

§ Look at the definition of the class
SpeciesFirstTry

§ This is supposed to supply all the code

belonging to any Object of that class

§ We see:
§ The class name (and an access modifier saying

that it is a publically usable class)

§ Three instance variables (what data each

Object has) and

§ Three method definitions (what can be done

by Objects of the Class)

Class Definitions

56

§ The instance variables and methods are

sometimes (confusingly) called members of

the Object

§ Note:

§ Each class definition should be in a separate file

§ Use the same name for the class as the file,

except add “.java” to the file name (Java is case

sensitive!)

§ As a good programming practice, start the class

(and file name) with a capital letter and

capitalise the first letter of inner words. Eg:
SpeciesFirstTry.java for the class

SpeciesFirstTry

Class Definitions

57

A UML Class Diagram

SpeciesFirstTry ß Class name

+ name: String

+ population: int

+ growthRate: double

ß Data

(instance

variables)

+ readInput(): void

+ writeOutput(): void

+ getPopulationIn10(): int

ß Methods

(actions)

58

§ Universal Modelling Language (UML)

outlines the definition of a class

diagrammatically

§ UML diagrams are mostly self-explanatory

§ A plus sign (+) indicates a public instance

variable or method

§ A minus sign (-) indicates a private

instance variable or method

§ Typically, the class diagram is created

before the class is defined

A UML Class Diagram

59

§ SpeciesFirstTry class has three instance

variables: name, population, and

growthRate

§ The accessibility, types, and names of

these instance variables are declared:

public String name;

public int population;

public double growthRate;

Instance Variables

60

§ public means that there are no restrictions

on how these instance variables are used

§ They can be looked at and/or changed by a

client

§ The client just needs to specify which instance

variable of which Object is being accessed

§ Eg: speciesOfTheMonth.population =

10;

§ Later we will see that these should be

declared as private instead of public

Instance Variables

61

§ The above declaration means that each
SpeciesFirstTry Object owns some data,

a String called name, an int called

population and a double called
growthRate

§ The actual values for a particular
SpeciesFirstTry Object may change as

the program runs

§ And a different SpeciesFirstTry Object

may have different values

§ But the types of the values are fixed

Instance Variables

62

§ In the main method in the client class,
speciesOfTheMonth is a variable which

refers to a SpeciesFirstTry Object

§ So this object (like any other in that class)

has the three instance variables with

particular values

§ So, it has an int called population

§ The above statement changes the value of that
int to 10

Instance Variables

63

§ If an Object referred to as X has an

instance variable var of any type then

X.var can be used wherever any other

variable of that type could be used

Instance Variables

64

§ Notice a couple of uses of new in the client program.

Eg:

SpeciesFirstTry speciesOfTheMonth

= new SpeciesFirstTry();

§ We will learn more about new later. Roughly ...

§ The above statement does two main things. It is like

the usual declaration and initialization statements for a

new primitive variable. Eg:

int b = 2;

§ We declare the variable type and give it a value

What’s New?

65

§ Here three actions are carried out:

§ We declare speciesOfTheMonth to be a

variable of (Class) type SpeciesFirstTry

§ We create a new Object of that type using new

§ The variable now refers to that new Object

§ So new SpeciesFirstTry() creates a new

SpeciesFirstTry Object with its own three

instance variable values

§ We can go on to use that object later in the

program because we also have a reference

to it

What’s New?

66

§ A method is an action that an object can

take

§ Which methods are available to a particular

Object depends on its class

§ Eg: SpeciesFirstTry objects have three

methods

§ A client may want, at a particular moment,

to get a particular Object to do a particular

action

§ This is called invoking the method, or

calling the method or passing a

message to the object

Using Methods

67

§ The client needs to specify (via a reference)

the Object being called and the method

name (with a dot between)

§ The method, like a procedure, may have

parameters and may have a return value

§ If the method has no parameters then you

still need to put parentheses() after the

method name

§ The method may return no value, i.e. if it is a

void method

Using Methods

68

§ If the method returns a value then the client

may want to use that

§ Here are some example invocations:
speciesOfTheMonth.readInput();

int futurePopulation =

speciesOfTheMonth.getPopulationIn10();

System.out.println("In ten years the

population will be " +

speciesOfTheMonth.getPopulationIn10());

Using Methods

69

§ In the client code there are two sorts of

variables:

§ instance variables such as
speciesOfTheMonth.population

(declared in a class definition outside any

method)

§ and local variables such as
futurePopulation (declared in a method)

§ It is easy to see the difference in usage

(note the dot)

Instance vs Local Variables

70

§ But now look at the body of a method. See
double populationAmount = population;

int count = 10;

§ Notice two local variables. But also notice

that the instance variable has lost its dot

§ Whose population is being used here?
Remember, every SpeciesFirstTry

Object has its own population

Instance vs Local Variables

71

§ The answer is that the method body will only

be executed when the method is called by a

client on a particular object, and it is that

object’s population which is used

§ The calling object is assumed to own these

§ Eg: call
speciesOfTheMonth.getPopulationIn10()

and it will be

speciesOfTheMonth.population which is

used here

Instance vs Local Variables

72

§ Note that you can write this.population

in a method if you want to (or sometimes

need to)

§ this refers to the calling object

Instance vs Local Variables

73

§ Replace getPopulationIn10() in

SpeciesFirstTry by the following method:

public int predictPopulation(int years) {

int result = 0;

double populationAmount = population;

int count = years;

while ((count > 0)&&(populationAmount > 0)){

populationAmount = (populationAmount +

(growthRate/100) * populationAmount);

count--;

}

Example

74

if (populationAmount > 0)

result = (int)populationAmount;

return result;

}// end predictPopulation method

Example

75

SpeciesSecondTryDemo

/** Demonstrates the use of a parameter with the

method predictPopulation */

public class SpeciesSecondTryDemo {

public static void main(String[] args) {

SpeciesSecondTry speciesOfTheMonth

= new SpeciesSecondTry();

System.out.println("Enter data on the

Species of the Month:");

speciesOfTheMonth.readInput();

speciesOfTheMonth.writeOutput();

int futurePopulation =

speciesOfTheMonth.predictPopulation(10);

Example

76

System.out.println("In ten years the

population will be " + futurePopulation);

//change the species to show how to change

//the values of instance variables

speciesOfTheMonth.name = "Klingon ox";

speciesOfTheMonth.population = 10;

speciesOfTheMonth.growthRate = 15;

System.out.println("New Species of Month:");

speciesOfTheMonth.writeOutput();

System.out.println("In ten years the

population will be " +

speciesOfTheMonth.predictPopulation(10));

}// end main

}// end class SpeciesSecondTryDemo

Example

77

§ SpeciesSecondTry is much more useful
§ We can project population any number of years

ahead (and not just 10)

§ To do so, we use a parameter

§ So the method definition has a formal
parameter, here an int called years, and the

method must be invoked by supplying an int

argument

§ Eg:

speciesOfTheMonth.predictPopulation(10);

Example With Parameter

78

§ The argument may be an int constant (10)

or an int variable or any expression of int

type

§ When the method is invoked the current

argument value is given as the initial value

of the formal parameter which acts like a

local variable in the method body

§ Note that in general, there may be many

parameters for a method and they may be

of various types, including primitive types,

and class types (and arrays)

Example With Parameter

79

§ The types, number and order of the

arguments must match exactly

§ This allows current values to be transferred

across to matching formal parameters

when the method is invoked

Example With Parameter

80

§ Suppose that we have a method with some

primitive parameters. Eg:
public int multAndInc(int x, int y){

int ans = x*y;

x = x+1;

return ans;

}

§ We can call it with a variable argument. Eg:
int a = 2;

int b = 3;

int c = X.multAndInc(a,b);

Call-by-value on Primitives

81

§ Suppose that we change the value of a

parameter in the body of the method

§ Then the value of the variable argument

is NOT changed
§ In this example, the value of a is not

changed

Call-by-value on Primitives

82

§ The situation may be similar or different in

other programming languages

§ We summarize the situation by saying that

for primitive types, Java uses call-by-value

§ Only the current value of the argument is

passed over to the formal parameter

§ There is no more lasting association

Call-by-value on Primitives

83

§ An array consists of a systematically organised

and named sequence of similar variables - called

the elements of the array

§ That is, it is a single name for a collection of

data values, all of the same type

§ The elements are numbered: 0, 1, 2, … and so

on, called the index (or subscript)

§ An array is used in place of a lot of separate

variables (which are of the same type)

§ You have seen String earlier, and it can be

considered as an array of characters

Arrays in Programming Languages

84

§ An array can be small with only 2 or 3

elements (or even zero), or it can be very

large with thousands of elements

§ An array is an ordered collection of data

items

§ Each item has a position (or index)

§ Each item (except first item) has a unique

predecessor

§ Each item (except last item) has a unique

successor

Arrays in Programming

Languages

Visualize Array

• Figure 7.1 A common way to visualize an

array

• Note sample program, listing 7.1

class ArrayOfTemperatures

86

§ General syntax for declaring an array:

BaseType[] ArrayName= new BaseType[Length];

§ Examples:

// 80-element array with base type char
char[] symbols = new char[80];

// 100-element array of doubles:
double[] readings = new double[100];

//100-element array of Species:
Species[] specimen = new Species[100];

Creating Arrays in Java

87

§ Length of an array is specified by the

number in brackets when it is created with

new

§ it determines the amount of memory allocated

for the array elements (values)

§ it determines the maximum number of elements

the array can hold

§ storage is allocated whether or not the elements

are assigned values

Creating Arrays in Java

88

§ The array length is established when the

array is created

§ It is automatically stored in the (read-only)

instance variable length, and cannot be changed

§ An array is a special kind of object in Java

§ Eg: declare an array of ints:

int[] mark;

// mark is now an “array of int” type variables, with

// null reference

Creating Arrays in Java

89

§ Create an array of int “objects” of a certain

length:

mark = new int[7];

// the variable mark now refers to an array of seven ints

// each one initialised to the default int value of zero

§ OR, declare and create:

int[] mark = new int[7];

§ Data can now be stored in the array as:

mark[0] = 85;

Creating Arrays in Java

90

§ You should have covered the concept of Arrays in

your previous unit, more details of Arrays in Java

will be covered in Topic 6.

[0] [1] [2] [3] [4] [5] [6]

mark: 85 70 50 62 39 92 54

Creating Arrays in Java

End of Topic 2

